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(i) H0: log{mu(x,t)} = alpha(x) + kappa(t) + iota(t-x)

(ii) H0: log{mu(x,t)} = alpha(x) + iota(t-x) + kappa(t)

(iii) H0: log{mu(x,t)} = kappa(t) + iota(t-x) + alpha(x)

Fig 1. England & Wales 1961-2003 male mortality experience, ages 0-99.
Linear structure H0: comprising main age-period-cohort effects fitted


in different orders, as specified in the above captions.  Main age effect


(1st column), main period effect (2nd column), main cohort effect (3rd


column). Single stage fitting process, with different model formulae.
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Fig 2. England & Wales 1961-2003 male mortality experience, ages 0-99.
Schematic data and projected arrays highlighting projected trajectories


(dotted lines) needed when computating statistics of interest (a) by cohort


for an individual aged 65 in year 2003, and (b) by period for an individual


aged 65 in year 2020.  This implies retaining data aged 60 and above
for (a), and data aged 43 and above for (b): allowing for the zero
weighting of the 5 most recent cohorts in the resulting data array,
when truncated.  However, truncation by age, involves discarding
data contributing directly to relevant cohorts: bounded by the back

projection of the (thick) diagonal lines in the projected array.
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period 1961-1997 period 1961-1999

period 1961-2001 period 1961-2003

period 1961-2005 period 1961-2007

Fig 3. E&W male mortality experience, ages 60-89. APC back-fitting exercise.


Reduction factor parameter estimates, with beta parameter smoothing.
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period 1961-1997 period 1961-1999

period 1961-2001 period 1961-2003

period 1961-2005 period 1961-2007

Fig 4. E&W male mortality experience, ages 0-89. APC back-fitting exercise.


Reduction factor parameter patterns, with beta parameter smoothing.
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period 1961-2004 period 1961-2005

period 1961-2006 period 1961-2007


Fig 5. E&W male mortality experience, ages 0-89. APC back-fitting exercise.

Reduction factor parameter patterns, with beta parameter smoothing.
Patterns in the upper right, and two lower quadrants, are generated by

constraining beta1 to the 1961-2004 generated pattern, depicted in
the upper left quadrant.
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(i) ages 60-89, sequential periods as stated

(ii) ages 0-89, sequential periods as stated


Fig 6. E&W male mortality experience. LC back-fitting exercise. Reduction

factor parameter estimates, with beta parameter smoothing.
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APC model structure

LC model structure

Fig 7. England & Wales 1961-2007 male mortality experience, ages 60-89.

Deviance residual plots against: (i) period (left column), (ii) age


(centre column), (iii) cohort year-of-birth (right column).
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(i) period 1961-2007, (ages 0-89) (ii) period 1961-2007, (ages 60-89)

(iii) period 1961-1997, (ages 0-89) (iv) period 1961-1997, (ages 60-89)


Fig 8. E&W male mortality experience. APC model: period index time series

with forecasts and matching residual plot, based on an ARIMA(1,1,0)

process. Four cases.
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ages 60-89: periods 2003, 2005, 2007

ages 0-89: periods 2003, 2005, 2007

ages 0-89: periods 2005, 2006, 2007 (constrained beta1)

Fig 9. E&W male mortality experience. Empirical log mortality rate
profiles with APC forecasts, by individual cohort year-of-birth: 1902,

1910, 1918, 1926, 1934, 1942.
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Figure(s)



life expectancy predictions, cohort trajectory

4% annuity predictions, cohort trajectory


Fig 10. E&W male mortality experience, ages 60-89; 30-89; 0-89. APC model.

Evolving biennial (1997, 99, 01, 03, 05, 2007) life expectancy and

4% fixed rate annuity predictions, by cohort trajectory: presented in
decreasing sequence, for individuals aged 65, 70, 75, 80 respectively.
Prediction intervals by bootstrapping the time series prediction error

and selecting 2.5, 50, 97.5 percentiles.
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individuals age 65 individuals age 70

individuals age 75 individuals age 80


Fig 11. E&W male mortality experience (ages 0-89). APC model (with beta1

constrained post 2004). Evolving predicted survivor indices by back-
fitting based on the retention of periods 1961 to 1997, 1999, 2001,
2003, 2005, 2007 respectively, depicted in sequence (within each

frame): for individuals aged 65, 70, 75, 80.
Simulated prediction intervals omitted.
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period 1961-1997: ages 60-89 period 1961-2007: ages 0-89


Fig 12.  E&W male mortality experience. LC model: period index time series

(modelled post 1978), two cases.  First row: R**2 linear regression


goodness-of-fit statistic.  Second row: ARIMA(1,1,0) time series residuals

Third row: full time series with predictions and prediction intervals.
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life expectancy predictions, cohort trajectory

4% annuity predictions, cohort trajectory


Fig 13. E&W male mortality experience, ages 60-89; 30-89; 0-89. LC model.

Evolving biennial (1997, 99, 01, 03, 05, 2007) life expectancy and

4% fixed rate annuity predictions, by cohort trajectory: presented in
decreasing sequence, for individuals aged 65, 70, 75, 80 respectively.
Prediction intervals by bootstrapping the time series prediction error

and selecting 2.5, 50, 97.5 percentiles.
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life expectancy predictions, cohort trajectory

4% annuity predictions, cohort trajectory

Fig 14.  E&W male mortality experience, ages 60-89. APC modelling.
Evolving biennial (1997, 99, 01, 03, 05, 2007) life expectancy and

4% fixed rate annuity predictions, by cohort trajectory: presented in
decreasing sequence, for individuals aged 65, 70, 75, 80 respectively.


Prediction intervals by simulation and selecting 2.5, 50, 97.5 percentiles

using Algorithm 1 and Algorithm 2, with and without allowance for time

series parameter error (pe).
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Algorithm 1: 40 simulations

Algorithm 2 (without Step 1): 40 simulations

Fig 15. E&W male mortality experience, ages 60-89, period 1961-2007.
Simulated ARIMA(0,1,0) period times series predictions using

Algorithms 1 and 2.
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On age-period-cohort parametric mortality rate projections.

Abstract
An augmented version of the Lee-Carter modelling approach to mortality forecasting, extended to 

include an age modulated cohort index in addition to the standard age modulated period index is described 
and tested for prediction robustness.  Life expectancy and annuity value predictions, at pensioner ages and 
various periods are compared, both with and without the age modulated cohort index, for the England & 
Wales male mortality experience.  The simulation of prediction intervals for these indices of interest is 
discussed in detail.

Key words and phrases: Mortality forecasting; age-period-cohort effects; forecast statistics; back-fitting, 
data truncation

1. Introduction

In Renshaw and Haberman (2006), a method of incorporating cohort effects into
the parametric structure of the basic Lee-Carter (LC) model for mortality projection was
introduced and illustrated (through an age-period-cohort model, abbreviated here to
APC).  In this sequel, we investigate certain wider aspects of this approach to mortality 
rate projection.  It is known that projection results can be sensitive to the length of the 
historical data period modelled (Denuit and Goderniaux (2005) and Janssen and Kunst 
(2007)) and we believe that a desirable feature of a mortality projection model is that the 
parameter estimates should be robust relative to the range of data employed in the 
estimation – both in terms of the ages and the time periods included.  In particular, we
ascertain the potential robustness of key indices of interest that depend on predicted 
mortality rates, by conducting properly constituted back-fitting exercises.  

We start from the premise that observed mortality rates covering a continuous 
period of reasonable duration are required if parameter patterns are to be established, and 
we then conduct the back-fitting exercise by retaining historical data and stepwise 
deleting the most recently reported data by individual period.  The potential impact on
mortality predictions due to data truncation by age, prior to analysis, is also investigated.  
The simple and transparent nature of mortality predictions under the LC modelling
framework, generated by treating a single period index as a standard univariate time 
series model, is also exploited.

The structure of the paper is as follows.  Section 2 provides a detailed and 
systematic presentation of our approach to model fitting, the depiction of issues arising
for cohort modelling as a result of possibly arbitrary data truncation by age, a means of 
‘topping-out’ mortality rates in old age and a means by which prediction intervals may be
constructed.

A detailed case study, based on the England and Wales 1961-2007 male mortality
experience, is then presented in Section 3.  Here, the back-fitting exercises, for both APC
and LC modelling, are conducted by deleting data biennially (in the first instance), 
working backwards from 2007 to 1997, with and without lower data truncation by age.  
Life expectancy and annuity value predictions are compared for a range of pensioner 
ages.  Results illustrating the different stages are presented pictorially throughout, and 
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this accounts for the relatively large number of figures. A full discussion of the results
follows in Section 4, followed by a summary in Section 5.

2. Poisson Lee-Carter incorporating cohort effects

2.1 Data array
Denote a rectangular mortality data array

  1 2 1 2, , :  age , ,... ,  period , ,...,xt xt xt k nd e x x x x t t t t  

comprising the reported number of deaths xtd , matching central exposures to the risk of 

death xte , and 0-1 weights xt to indicate either empty or omitted data cells.  It is 

envisaged that the Lexis diagram underpinning the data array is partitioned into unit 
square cells of size one year, by single year of age and single calendar year.

2.2 Model details
We target the force of mortality xt by modelling the numbers of deaths as 

independent Poisson responses ~ ( )xt xt xtD Poi e  in combination with the log-link, so that

 log log logxt xt xtE D e  

together with the parametric structure

(1) (0): log xt x x t x t xAPC          .

This generalises the Lee-Carter log-bilinear parametric structure

: log xt x x tLC     

by allowing for an age modulated cohort index t x  in addition to an age modulated 

period index t , where x is an average of log xt taken over time t.

2.3 Model fitting
Following Renshaw and Haberman (2006), a two-stage fitting strategy is adopted,

comprising the estimation of x as

ˆ log log
xt

xt xt
x xt

t txt xt

d d

e e



 
   

    
   

         (1)

followed by the implementation of the iterative fitting algorithm
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Set starters (0) (1)ˆ ˆˆ ˆ, , ,x t x x t    , compute ˆ
xtd


Update t̂ x  , compute ˆ

xtd

update (0)ˆ
x , compute ˆ

xtd

update ˆt , adjust  ˆt s.t. 
1

ˆ 0t  , compute ˆ
xtd

update (1)ˆ
x , adjust  (1)ˆ

x s.t. (1)ˆ 0x x   , compute ˆ
xtd

Compute the model deviance


Repeat the updating cycle, stop when the deviance converges

This is designed to minimise the (conditional) Poisson deviance

2
xt

xt xt

d

xt
xt

xt e

d u
D du

u

 
   , where  (1) (0)ˆ ˆ ˆˆ ˆ ˆexpxt xt x x t x t xd e         .

The first two of the four permitted parameter constraints

1

(1) (1) (0)0,  >0  ,  1t x x x
x x

x        ,        (2)

are used when setting the starting values (Section 2.4) and are subsequently maintained in
the iterative fitting algorithm, while the other two constraints are imposed once the 
algorithm has converged.  The second adjustment, ensuring that the age modulating
period index (1)

x is consistent in sign, warrants some further detailed discussion (which 

we defer until Section 4), and may well be found to be redundant in applications.  As a
potential aid to convergence, we allocate zero weights to the first and last c = 3 (say)
cohort years, which occur in opposite diagonal corners of the data array.

2.4 Starting values
Starting values for APC are determined by setting (0) (1) 1,x x x    and fitting

the Poisson response GLM

0 : log xt x t t xH       

with ˆlog x contributing to the offset, and, trivially, the model formula chosen in order to 

ensure that 
1

0t  .

2.5 Why two-stage fitting?
The fitting of model APC is complicated by the relationship
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year of birth = calendar year – age

which leads to problems of identifiability.  Points of concern are best illustrated by fitting 
the simpler linear model 0H .  Refer to Fig 1, in which we have fitted 0H as a Poisson 

GLM to the 1961-2003 (ages 0-99) England & Wales male mortality experience, as
reported in Renshaw and Haberman (2006), using just three of the many different model 
formulae possible (design matrices): corresponding to the order in which the three age-
period-cohort main effects are specified in the individual captions.  This generates three 
different sets of parameter patterns: only for x are the patterns stable and they provide a 

realistic representation of the main age effects which match the typical shape of a static 
life table on the log scale.  In addition, only the upper x profile is correctly scaled.

Faced with the need (in our judgement), to preserve this representation in order to 
ensure the capture of age effects in a complex modelling situation, we have chosen to 
adapt the original Lee-Carter (1992) two-stage fitting strategy when fitting APC, by 
conditioning on a predetermined static life table in order to represent the main age-
effects.  We see no reason to change this approach to fitting APC by incorporating 
iterative adjustments to the main age effects, as suggested by Cairns et al. (2009), 
especially given the wider objective of model projection.  In our limited experience of 
incorporating the Cairns et al. (2009) suggestion into the iterative fitting algorithm, we 
have observed that the already slow rate of convergence is made appreciably slower, and 
so, we believe that it should be avoided on purely practical grounds.  The question as to 
whether the iterative fitting process then results in attainment of a global optimisation has 
still to be resolved.

Thus, our approach to fitting APC involves 3-stages: 
(i) the establishment of a static life table to represent the main age effects;
(ii) conditional on (i), the establishment of main period and cohort effects, 

through the choice of starting values; and
(iii) conditional on (ii), the establishment of age modulating indices (1)

x and (0)
x

using the fitting algorithm.
All aspects of this approach to APC model fitting are data driven, rather than being
imposed.

2.6 Model dynamics

Mortality rate extrapolation requires the time series forecasts  : 0
nt j j   and

possibly  :  0
n ct j x j
    , depending on the projected trajectory of interest, so that

       (1) (0)
,

ˆ ˆˆexp , ,  , exp ,  0
n n nx j t j x j n n x j t j x j t j xF x j t j F x j t j j                    .

Here, we have highlighted the decomposition of the forecast mortality rates into the 
product of a static life table  ˆexp x and mortality reduction (adjustment) factor F.  In 

this approach, we ensure ‘continuity’ with the latest estimated mortality rates, as opposed 
to the latest observed mortality rates (as in Renshaw and Haberman (2006)), in the 
transition to the extrapolated mortality rates.  We believe that this feature has a minimal 
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effect on the indices of interest which are computed subsequently (Section 2.8) and hence 
it is applied consistently throughout this paper. Typically, we envisage the application of 
the  ,1,ARIMA p q time series to the main period component: extrapolation of the cohort 

component is not required for the detailed case study reported in this paper, because we 
are focusing on back-fitting rather than on cohort-based projections for cohorts reaching 
age 65 beyond the data range.

2.7 Data truncation
Concerning the use of extrapolated mortality rates in the valuation of fixed rate 

annuities at typical retirement ages, the question of data truncation by age, prior to 
modelling, may need to be considered (Cairns et al. (2009)).  Refer to Fig 2, in which we 
have depicted typical data and projected arrays, for the England & Wales 1961-2003 
male mortality experience (ages 0-99). Here, we highlight the projected trajectories 
needed when computing statistics of interest (a) by cohort, for an individual aged 65 in 
year 2003, and (b) by period, for an individual aged 65 in 2020.  As illustrated, these 
require the retention of (a) data aged 60 and above, and (b) data aged 43 and above, 
allowing for the allocation of zero weights in the last c = 5 cohort years (say).  Clearly,
data below these age limits contribute directly to the relevant cohort years under age-
period-cohort modelling.  Thus, we could decide to include all the data available in the 
modelling exercise or, like Cairns et al. (2009), we could argue that our interest in 
longevity risk means that we should consider a more restricted age range of, say, 60-89.  
This is a matter of judgement.  We follow the former of these approaches on the grounds 
that the observations at younger ages may improve the model fit and strengthen the 
parameter estimates for t and t x  .

2.8 Indices of interest
We refer to life expectancies and level immediate annuities, computed by the

cohort method, thereby allowing for the future evolution of mortality rates.  We focus on 
the most recent period nt , for which data are available, and so consider individuals aged x

at that time.  The indices are computed, respectively, as
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where

       1 1 1 ,  1 expx xt x xt xtl t q l t q      

with discount factor v and survivor index (representing the probability of survival from 
age x to age x+t on the basis of the mortality experience of the cohort aged x in year nt )

 , : 0
nx tS t t  .  In both cases, we truncate the summation over i so that ages beyond a 
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maximum age of  are not considered.  We note (as mentioned in Section 2.6) that both 
of these indices do not require the time series modelling of the main cohort index (Fig 2).

2.9 Prediction intervals
The construction of satisfactory prediction intervals for life expectancies 

involving extrapolated mortality rates, (and, by implication, annuity values), which are
computed either by the cohort or period method under the simpler Poisson LC modelling
framework has proved problematic.  See Renshaw and Haberman (2008) for a discussion 
and investigation of these issues and Denuit et al. (2009) for a workable resolution of this 
problem.  This resolution involves the simulation of the forecast error in the associated 

( ,1, )ARIMA p q applied to the main period effect, while ignoring the model fitting error: 
this latter component is found to be of negligible effect in comparison, a result which is 
in general agreement with the original findings of Lee and Carter (1992).  The simulation 
strategy that we adopt reads as follows

Algorithm 1
For simulation 1,2,...,m M

1. randomly sample *
mz from (0,1)N .

For 1,2,...,j J

2. set * *
, .

n n nt j m t j t j mE Var z            , based on the same ARIMA model

3. compute *
, ,nx j t j m  

4. compute the indices of interest.

The construction of equivalent theoretical prediction intervals is also possible (Denuit et 
al. (2009)).  This approach readily extends to APC modelling for applications which do 
not require the extrapolation of the cohort index, as is the case here.  Further possibilities 
are discussed and illustrated in Section 4.

2.10 Topping-out by age
Under APC (and LC) modelling, projected mortality rates

 , : 1,2,...,  
nx j t j k kj x x x x      ,

restricted (above) by kx , which represents the upper limit of the data available, are 

available for the computation of the indices of interest by the cohort method.  In order to
implement topping-out by age, when required, projected log mortality rates are 
extrapolated further along the age axis up to age  ( )kx  , using the following quadratic 

differencing formula

   ,log 1
nj x j t ju a bj cj j       ; 1, , 1,..., .k k kj x x x x x x x      

This technique is a variant of the widely used demographic method proposed by Coale 
and Kisker (1990).  We note that the first two terms ensure ‘continuity’ and, together 
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with the pre-specification of either xu or 2c , the incremental second differences, serve 

to determine ju and hence

, : 1, 2,...,
nx j t j k kj x x x x x         .

3. Case Study: England & Wales 1961-2007 male mortality experience, ages 0-89

3.1 The data
We focus on the numbers of recorded deaths and matching population sizes 

exposed to the risk of death, as compiled by the UK Government Actuary’s Department
(GAD) for the England &Wales male mortality experience.  The data are cross-classified 
by individual calendar year 1961-2007 and age last birthday 0-89. These data are an 
updated version of the 1961-2003 E&W male mortality experience (ages 0-99), reported 
and modelled in Renshaw and Haberman (2006): data in the age range 90-99 are no 
longer readily available from the GAD website.

3.2 Objectives
The primary purpose of this study is to investigate the robustness of the predicted 

values of certain indices of interest that are dependent on future mortality rates, using the  
APC modelling approach described in Section 2.  We carry out this investigation by
conducting systematic back-fitting exercises. As a secondary objective, we also
investigate the possible effects on these indices of truncating the data set by age from 
below, prior to modelling.  Further, the corresponding predictions using LC modelling,
with no allowance for cohort effects, are reported for comparison.

Specifically, we focus on the predicted values of life expectancy and present 
value of a level immediate annuity (based on a 4% interest rate), both computed by the
cohort method. Back-fitting involves the retention of data for the periods 1961 to 1997, 
1999, 2001, 2003, 2005 and 2007 respectively (abbreviated 97(02)07), while predictions 
are made for the most recent period available in any retained data, for individuals aged 
65, 70, 75, 80 (abbreviated 65(05)80), with and without lower data truncation at age 60
(and 30).

3.3 APC back-fitting
The two-stage model fitting strategy (Section 2.3) is used throughout, with the 

first stage estimates for x , obtained by averaging over the requisite period using

equation (1).  These take the familiar pattern of a static life-table (log scale), with 
accident ‘hump’, typically as depicted in the upper left frame in Fig 1: noting that only
part of this profile is required when the data are truncated from below by age.

In all cases, zero weights are applied to the c = 3 most distant and recent cohorts 
available for analysis, together with the allocation of a zero weight to the 1886 cohort, for 
which the population estimates underpinning the calculation of the exposures are suspect
(as noted by Renshaw and Haberman (2006)).  As an adjunct to modelling, we smooth 

the fitted age modulating indices (0) (1)ˆ ˆ,  x x  , (using the S-plus super smoother) in order to 
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avoid localised age induced anomalies when projecting mortality rates (Renshaw and 
Haberman (2003), Delwarde et al (2007)).

The 6 sets of parameter patterns generated by the back-fitting exercise with lower 
truncation at age 60 are depicted in Fig 3.  We particularly draw attention to the stability 
of these biennial patterns, 97(02)07, coupled with the near linearity of the period index 

t .

The corresponding 6 sets of parameter patterns generated by the biennial back-
fitting exercise 97(02)07, using the full age range 0-89, are depicted in Fig 4.  A key 
feature of note is the progressive straightening of the otherwise consistent pattern in the 

age modulating period index (1)ˆ
x at ages 70 and over when the fitting period is extended 

beyond 2004: back-fitting has been extended to include the cases 1961-2004 (upper left 
quadrant Fig 5) and 1961-2006 (not shown) and the results confirm the presence of this 
feature.  The consequences for model predictions are discussed shortly.  However, this

phenomenon is negated if we condition on the established 2004 (1)ˆ
x pattern (upper left 

quadrant Fig 5) in the starting values, and suppress their subsequent updating when 
applying the iterative fitting algorithm (as introduced in Section 2.3).  (We note, in 
passing, that a by-product of this adaptation for model fitting is to speed up the rate of 

convergence). The results, on constraining (1)ˆ
x in this way, are depicted in the 

remaining three quadrants of Fig 5.  The linearity of the main period index t , in both 

Figs 4 & 5, is particularly noteworthy and is in line with the results of Renshaw and 
Haberman (2006).  The distinctive pattern of the cohort index t x  and its interpretation

(Renshaw and Haberman (2006)) is also of passing interest.

3.4 LC back-fitting
The corresponding biennial back-fitting patterns for the case of parameters for the 

LC model, both with and without lower age truncation at 60, are depicted in Fig 6.  The 
stable patterns, together with mild curvature in the period index t are of particular note

throughout.  This feature is in contrast with the lack of curvature noted in the previous 
section for the APC model.

3.5 Model diagnostics
In our experience, basic displays of deviance residuals, plotted separately against 

period, age and cohort year-of-birth are both essential and more informative than separate 
rectangular (age-period) plots of positive and negative residuals. In Fig 7, we present 2
such sets of plots, one each for APC and LC modelling: for the case of 1961-2007 with 
age truncation at age 60.  These plots are representative of all of the other cases,
highlighting the capture of period and age effects under both model structures, together 
with the ability (upper panel) or inability (lower panel) of the models to capture cohort 
effects, as the case may be.

3.6 The APC period index time series
For APC modelling, exploratory time series analysis of the main period indices, 

leads to the adoption of an (1,1,0)ARIMA in all cases.  For this time series



9

 2
1 1,  ;  ~ 0,  . . .t t t t t t ty y y N i i d            2 3, ,..., nt t t t

with forecasts : 1,2,3,...
nt j j   , where

  
1

,  
1n n n

j
i

t j t t
i

E y
     




        

21
2

1 0
n

j i
k

t j
i k

Var   



 

             
  .

Typical details, including residual plots, are illustrated in Fig 8.

3.7 APC log mortality rate predictions
The evolutionary aspect of forecast mortality rates generated by APC back-fitting, 

are presented in Fig 9, in the first instance.  Here, within each frame, we have plotted the
empirical log mortality rates for regularly spaced cohort years-of-birth 1902(08)42
(where appropriate), with the superimposed APC projections.  The respective frames in 
the first two rows relate to predictions made in 2003(02)07, both with (first row) and 
without (second row) prior data truncation at age 60.  Specifically, the second row of 
frames reveals the evolving over-optimistic nature of the post 2003 mortality forecasts 
induced by the change in shape, in the upper age range, of the age modulating period
index (1)

x .  Modified 2005(01)07 predictions, corrected by constraining the modulating

period index (1)
x to 2004 levels, are displayed in the third row of frames.

3.8 APC predicted indices of interest
In the respective upper and lower frames in Fig 10, we present the evolving 

biennial 97(02)07 life expectancy (upper frame) and 4% fixed rate annuity (lower frame) 
predictions, computed by cohort trajectory, for individuals aged 65(05)80, with and 
without prior truncation of the data by age.  In addition to truncating the data at age 60 
(as reported throughout), we have also repeated the analysis on the basis of data 
truncation at age 30, and report the outcome in Fig 10.  Each prediction interval is 
constructed on the basis of M = 5,000 simulations, as described in Section 2.9 using 
Algorithm 1.

The general alignment of matching predictions made with, and without, lower 
data truncation, for these data, is noteworthy.  Comparing like with like, slightly wider 
prediction intervals result when lower data truncation at age 60.  Further comments 
follow in Section 4.

3.9 APC predicted survival indices
In Fig 11, we present the six evolving biennial predicted survivor indices, within 

each frame, for individuals aged 65(05)80, based on the full age range: these indices have 
been used as part of the construction of Figs 9 & 10.  Prediction intervals (or fans) are
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omitted for clarity.  Similar patterns are observed when we use lower data truncation at 
age 60 (results are not shown).

Here, the tails (last 10 years) of the indices are constructed as described in Section 
2.10, using the settings 99,  2 0.01c   , throughout.  By fixing the incremental second 
differences, 2c, in this way, the extrapolated log mortality rates follow from summing the
required number of constant differences with 1k kx x x xu u   as the starting value, and then 

combining the outcome with 1kx xu   as the initial value before summing a second time.

The topping-out process, typically contributes the following amounts to the 
overall values of the APC predicted indices of interest:

Age 65 70 75 80
Life expectancy 19.81, 18.17 15.65, 14.09 11.57, 10.14 8.18, 6.12

4% annuity 12.45, 11.84 10.49, 9.79 8.25, 7.46 6.12, 5.12

In this table, period 2007 point predictions, subject to prior age truncation at age 60, have 
been computed with, and without using the extrapolated tail.  We note that the 
contribution from the topping-out process is significant at the oldest ages and that it
diminishes, as we would anticipate, as a proportion of the overall measure when we move 
to younger ages.  This process is applied consistently throughout, so as to facilitate the 
comparisons.

3.10 The LC period index time series
Forecasting with the LC model is complicated by the lack of linearity in the 

period index (as shown in Fig 6).  While good time series fits are achieved using second 
order  ,2,ARIMA p q processes, we avoid this possibility, in part, because the associated 

prediction intervals are excessively wide.  Further reasons for not using this process are 
presented in Section 4.  Instead, working backwards, we attempt to choose the optimal set 
of data to be included in the fitting process so that the resulting period index is effectively 
linear – thus we curtail the effective portion of the time series at a perceived point of 
departure from linearity.  In order to assist with this somewhat subjective process, we 
monitor the profile of the 2R linear regression goodness-of-fit statistics, which have been
constructed sequentially working backwards (as proposed by Denuit and Goderniaux 
(2005)).  For the purpose of this analysis, the portion of the LC period index post 1978 is 
modelled as an  1,1,0ARIMA process.  By way of illustration, 2R profiles, together 

with the corresponding residual and time series plots, for two cases, are displayed in Fig 
12.  In order to comply fully with the procedure prescribed in Denuit and Goderniaux 
(2005), it is then necessary to re-estimate  and x x  by fitting the simple Poisson GLM

 log xt x x t t    

to the reduced data set, where t denotes the mean of the reduced period.

3.11 LC predicted indices of interest
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In Fig 13, we present the evolving biennial 97(02)07 life expectancy and 4% fixed 
rate annuity predictions, computed by the cohort method, for individuals aged 65(05)80, 
with and without lower data truncation at age 60 and age 30.  Direct comparison with Fig 
10 is possible, as the same scales are used.

As with Fig 10, the general alignment of the corresponding predictions in Fig 13,
made with, and without, lower data truncation, for these data, is noteworthy.  As 
previously, on comparing like with like, we note the slightly wider prediction intervals
which result when lower data truncation at age 60 is applied.

Direct comparison of matching elements between Fig 13 and Fig 10 indicates the 
extent to which life expectancy and annuity predictions are understated on the basis of LC
modelling, compared with APC modelling.  This is discussed further in Section 4.

4. Discussion

In this section, we look at a number of issues arising from the above analysis.

4.1 We have conducted equivalent APC and LC back-fitting exercises on the earlier 
1961-2003, ages 0-99, version of the E&W male mortality experience (as analysed in 
Renshaw and Haberman (2006)).  These results are not reported in detail here – however, 
based on biennial deletions from 1995 to 2003, our findings are generally consistent with 
the current reported study, but do not show the evolutionary nature of the age modulating
period index, post 2004, (at ages 0-89) which is discussed in Section 3.3 above.

4.2 The persistent linear nature of the period index, observed throughout the back-
fitting exercises involving biennial ‘front-end’ 97(02)07 data reductions under APC
modelling, brings clarity and simplicity to the time series element of this approach to 
prediction.  In a separate exercise, generating 2007 predictions on the basis of biennial 
‘back-end’ 61(02)71 data reductions (age-range 60-89), the persistent linearity of the 
period index is again observed: generating consistent 2007 predictions in the process, 
stacked one above the other if depicted as in Fig 10.  As a consequence, the need to 
establish an “optimal fitting period” does not arise.  However, it is likely that the linearity 
of the period index is data specific, although a preliminary investigation indicates that it
is also a feature when APC modelling is applied to the corresponding data set for 
females.

For LC modelling, issues posed by the occurrence of mild curvature in the period 
index have to be addressed (Section 3.10).  Although a more refined treatment of this 
issue is possible, again involving a subjective element, by establishing a rolling
“optimum fitting period”, the LC predictions depicted in Fig 13 would have changed very 
little if this refinement had been fully implemented.

4.3 The relatively close alignment of the predictions under APC modelling, with and 
without prior lower data truncation at ages 60 and 30 (see Fig 10), is reassuring, given the 
loss of data under truncation that directly contribute to the relevant cohorts.  In the back-
fitting exercise with prior lower data truncation at age 30, (where the results are not fully 
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reported), it was found necessary to constrain the age modulating period index (1)
x post 

2005 (Fig 10).

4.4 In APC and LC modelling applied to the case study, the slope of the period index 

t is negative throughout.  In the event that the associated modulating index (1)
x is also 

negative (at age x say), the contribution from the period index to the overall mortality rate
represents increasing mortality over the whole of the period concerned.  Initially, we have
not applied the second of the constraints (2), because mortality deterioration at certain 
ages could be a realistic possibility.  This feature is supported by the data: for example, in 
the back-fitting exercises, conducted without prior lower age data truncation, negative 
values of (1)

x result for individuals in their late 20s (Figs 4 & 5).  In the event, the 

constraint ( (1) 0,   x x   ) is found to be redundant throughout the APC back-fitting 

exercises reported in Section 3 both with, and without, prior lower data truncation at age 
60.

4.5 The above constraint is needed, however, when prior lower data truncation is 
applied at age 30, when completing the calculations for Fig 10.  Here, without applying 
the constraint, values of the modulating index are consistently negative for ages below 
the upper 40s.  Hence, in this case, the constraint on (1)

x is necessary to prevent the 

model from inducing a seemingly arbitrary switch across the age range, from improving 
to deteriorating period contributions to the overall mortality rates.

4.6 In the LC and expanded APC frameworks, mortality rate projections required for 
computing the indices of interest by the cohort method are controlled by the product 
term, x t  , which comprises a single age modulated period component.  Patterns in the

time dependent constituent components are data driven (as opposed to imposed), while 
stability over time in both components is a prerequisite to robust forecasting.  We note
that the introduction of the additional cohort structure into the LC structure is observed to
lead to an evolutionary pattern change in the age modulating period index, (for ages 70 
and above) after a period of stability, as we change the fitting period. As we have seen, 
any pattern in the age modulating index, which is observed to become established over a 
period, or otherwise, may be readily imposed by trivial adjustments to the fitting 
algorithm.

4.7 As a possible alternative approach to the construction of prediction intervals
(Section 2.9), we adapt the algorithm to read as follows

Algorithm 2
For simulation m = 1, 2, … , M

1.   generate * * *, ,m m m  
For j = 0, 1, 2,…, J

2. randomly sample *
1,j mz  from  0,1N

3. generate  * * * * * * * *
1, , , 1, 1,j m m j m m j m j m m j mz            
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4. compute *
, ,nx j t j m  

5. compute the indices of interest.

Provision for parameter error in Step 1 may be based on the (marginal) posterior 
parameter distributions
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assuming vague prior knowledge (e.g. Proposition 12.3 pp 356-7 Hamilton (1994)).  
Starting values * *

0, 1, 1,  
n nm t m t      are required for Step 3.  If parameter error were

ignored, Step 1 is omitted and we take * * *ˆ ˆ ˆ,  ,  m m m        in Step 3.  Obviously, the 

time series reduces to the random walk with drift parameter  if the auto-regressive 
parameter  is pre-set to zero.  This approach is then consistent with that adopted by 
Cairns et al. (2006), who utilise a bi-variate random walk with drift to model a pair of 
period indices, controlled by prescribed age modulating functions.

4.8 A comparison of prediction intervals using Algorithm 1 and both versions of 
Algorithm 2 (viz. with and without allowance for the time series parameter error), is made 
in Fig 14.  Here, we reproduce the biennial 97(02)07 life expectancy and 4% fixed rate 
annuity prediction intervals, by the cohort method, for individuals aged 65(05)80, subject 
to prior data truncation at age 60 (as in Fig 10), and compare these with the 
corresponding prediction intervals generated by both versions of Algorithm 2.  For the 
detailed comparison in question, under Algorithm 2, the provision for the time series 
parameter fitting error is found to generate marginally wider prediction intervals for 
individuals aged 65, than without this provision.  For individuals aged 70(05)80 this 
effect is negligible.  Comparing like with like, Algorithm 1 generates wider prediction 
intervals than Algorithm 2 throughout.  When the comparison exercise is extended to 
include a version of Algorithm 1 with additional provision for simulating time series 
parameter error, in parallel with Algorithm 2, it is found to have no material effect.  
Detailed evidence for this feature is reported in Section 4.9.

4.9 Setting to one side the provision for simulating time series parameter error 
(Algorithm 2, Step 1), Algorithms 1 & 2 differ essentially in the way that the time series 
forecasts are simulated: Algorithm 1, Step 2 compared to Algorithm 2, Step3.  It is 
informative and simpler to compare these two steps, in the first instance, by pre-setting 

0  and assuming a uni-variate random walk with drift  .  Then, under Algorithm 1, 
Step 2, the simulated forecast is

* * *
,

ˆ ˆ ,  where ~ (0,1)
n nt j m t m mj j z z N       ,        (3)
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while, using successive substitution, the equivalent simulated forecast under Algorithm 2, 
Step 3, is

   * * * *
, , , ,

1 1

ˆ ˆ ,  where ~N 0,1)  . .  with ~ 0,
n n

j j

t j m t i m i m i m
i i

j z z i i d z N j   
 

 
    

 
  ,

the same as (3), when applied in this form.  However Algorithm 2, Step 3 is not applied 
in this form, but rather in the form described in Algorithm 2.  The difference that this 
makes is illustrated by plotting 40 simulated period time series predictions for the two 
cases, Fig 15.  Thus using Algorithm 1, the familiar ridged structure of an  0,1,0ARIMA

forecast is preserved under simulation, but not under Algorithm 2.  Consequently, it 
would appear that this effect accounts for the reported differences in prediction intervals 
widths, when comparing the performance of two algorithms.  Finally, restoring the 
provision for simulating parameter error in this case (Algorithm 2 Step 1), requires the 
posterior distributions
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As a further illustration of this effect based on (0,1,0)ARIMA , life expectancy 
simulated prediction intervals, using Algorithm 1 and Algorithm 2 without provision for 
parameter error, for individuals aged 65 in 97(02)07, are tabulated below for comparison:

2007 2005 2003 2001 1999 1997

A1 (18.35, 21.24) (17.56, 20.23) (16.84, 19.51) (16.51, 19.30) (15.78, 18.61) (15.31, 18.26)
A2 (18.53, 20.92) (17.75, 19.94) (17.04, 19.22) (16.72, 19.01) (15.98, 18.31) (15.52, 17.95)

Life expectancy 95% prediction intervals, individuals aged 65: without provision for parameter error

When the time series parameter error is allowed for, the results are as follows:

2007 2005 2003 2001 1999 1997

A1 (18.33, 21.22) (17.55, 20.22) (16.83, 19.50) (16.49, 19.30) (15.75, 18.61) (15.28, 18.26)
A2 (18.42, 21.11) (17.66, 20.11) (16.93, 19.40) (16.57, 19.24) (15.80, 18.56) (15.29, 18.27)

Life expectancy 95% prediction intervals, individuals aged 65: with provision for parameter error

Again, the allowance for time series error, when applied to Algorithm 1, has no material 
effect.

For the  1,1,0ARIMA time series, the corresponding expressions read as follows

Algorithm 1, Step 2:
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4.10 It has not been possible to compare the simulated prediction intervals (Fig 14) 
with the theoretically constructed prediction intervals (Denuit et al. (2009)): these require
estimates for (1)

x over the complete relevant age range, including (1) ,  90x x  , which 

cannot be estimated because of the paucity of data in this region.

4.11 Just as Algorithm 2 (Section 4.7) is a univariate adaptation of the Cairns et al.
(2006) approach to prediction interval simulation, Algorithm 1 can be adapted to simulate 
prediction intervals for model structures involving multiple period indices (e.g. Renshaw 
and Haberman (2003), Cairns et al (2006)).  Thus, for a vector of period indices t , 

modelled as a multivariate random walk with vector of drift parameters  , variance-
covariance matrix  with Cholesky decomposition  CC , so that

 1 2 3,   ~ , ,   , ,...,t t t t nmulN t t t t        0 ,

then Algorithm 1, Step 2 reads as follows:

* *
, . .

n nt j m t mj j      C z

where *
mz is a vector of randomly sampled standard normal deviates. 

4.12 In comparing APC and LC predictions (Fig 10 with Fig 13), a priori, the capture 
of demonstrable cohort effects using APC (as shown by the residual plots of Fig 7) leads 
to more favourable predicted mortality outcomes than is otherwise the case using LC.  As 
an illustration, in the first two rows of the table below, we tabulate the current 97(02)07 
life expectancy point predictions, computed by cohort trajectory, for an individual aged 
65, using APC and LC modelling respectively, subject to data truncation at age 60.

  predicted life expectancies, individuals aged 65       * truncated range

There does not appear to be any track record in the literature for modelling the LC
period index as a second order integrated time series, such as (0,2,0)ARIMA , although 
there is evidence that, for the data set considered here, this process fits the complete time 

Epoch 2007 2005 2003 2001 1999 1997
APC ARIMA(1,1,0) 19.81 18.90 18.18 17.87 17.19 16.73
LC ARIMA(1,1,0)* 19.16 18.46 17.74 17.45 16.78 16.36
LC ARIMA(0,2,0) 20.01 19.83 18.48 19.57 17.48 18.12
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series well (residual plots omitted).  When this model is applied, the resulting life 
expectancy point predictions are as reported in the third and final row of the above table.  
Under this approach, the LC point predictions are unexpectedly greater than the matching 
APC point predictions, in addition to exhibiting irregularity over time.

4.13 Although the focus in this paper is on ‘current’ cohort trajectory based predictions 
at pensioner ages 65(05)80 throughout, this approach to age-period-cohort parameter 
predictions can be readily extended to individuals at younger ages, provided that the 
relevant data are available.

5. Summary

In this section, we summarise our conclusions and current views on mortality rate 
projecting using the APC modelling framework.

 The wider aspects of the discussion contained in Lee (2000), relating to LC
modelling, are also relevant to APC modelling.

 The high degree of parameterisation of the model ensures the capture of data 
driven patterns for age, period, and cohort effects, irrespective of the size of the 
age range.

 The APC model fitting algorithm, perceived as the third stage in the fitting 
process (Section 2.5), is sufficiently flexible to allow control over both the sign 
and shape of the period index modulating factor (1)

x , as and when required, in 

order to ensure stability over time.
 Any lack of robustness in the parameter patterns (as the number of parameters is 

increased), may be attributed to the slow rate of convergence in the fitting 
algorithm, which itself, is indicative of the determination of a stationary point in a 
flat region of the likelihood (deviance) surface (Cairns et al. (2008)).  This 
remains an issue for further investigation.  In Section 3, the change in the shape of 
the index (1)

x to emerge in the upper limits of the age range is managed by 

restricting (1)
x to an established pattern, and we note that this results in a faster 

rate of convergence.
 The modelling of the period index as a second order integrated ( ,2, )ARIMA p q

process is to be avoided for the reason stated in Section 3.10 and the further 
reasons illustrated in Section 4.12.

 As a basic tenet when comparing indices of interest requiring mortality rate 
predictions, indices based on models which capture cohort effects in the data,
(typically APC) should reflect this fact when compared with corresponding 
indices based on models which fail to capture cohort effects in the data, (typically 
LC).  As a manifestation of this, we believe that, for England & Wales, the former
set of predicted indices should reflect lower mortality than the latter set.

 There is emerging evidence (Denuit et al. (2009)) in support of the original Lee 
and Carter (1992) (Appendix B) finding, that the prediction error in the period 
index time series dominates the parametric estimation source of error when fitting 
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the LC structure.  The LC period index time series was modelled originally as an 

 0,1,0ARIMA process but it has been argued in the literature that this result 

extends to other first order integrated processes.  In this study, we have assumed 
that this result continues to apply on fitting the APC structure and time series 
modelling is restricted to the period index only, in common with the LC
framework.  On this basis, the prediction error in the period index time series, 
when fully represented, is additionally shown to dominate the parametric 
estimation source of error in the first order integrated ARIMA process (Fig 14, 
Section 4.9).

 Under the conditions described above (as in the previous bullet point), the 
construction of upper and lower theoretical prediction intervals is possible in 
circumstances where the data extend over the complete relevant age range (Denuit 
(2007), Denuit et al. (2009)).
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We thank the reviewer for his/her helpful and thoughtful comments. Our response to the
reviewers’ comments (in reverse order) is as follows:

 The details of the 2nd and, additionally, the 8th reference have been updated.
 The paper has been shortened, as suggested, by making reductions to Sections 2.2, 

2.3, 2.4 and 2.6, without detriment to the overall narrative.  We have also 
shortened a couple of the displays when presenting equations.  However, we 
believe that it is desirable to retain the display setting out the iterative fitting 
algorithm (Section 2.3) in order to achieve a self-contained narrative and highlight
how the parameter constraints are applied.

 A separate investigation involving a detailed comparison with predictions using 
the various Cairns et al parametric models, and other such models, has reached an 
advanced stage of preparation.  However, because of the size of this project, 
involving a number of additional considerations not reported here, including the 
establishment of a basis for conducting such a comparison, it is our intention to 
present these findings as a separate paper.  As a necessary prelude to this work, it 
was necessary to resolve an apparent anomaly arising from the different Denuit et 
al and Cairns et al approaches to the construction of prediction intervals (fan 
charts), which we address in Section 4 of this paper.

 We are appreciative of the reviewer for drawing our attention to the issue of 
“optimal fitting period”, which has much relevance.  In order to deal with this 
issue more fully and explicitly, we have expanded Section 3.10 and redrafted and 
expanded Section 4.2.  There is also a deletion in Section 4.12 as a consequence.
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